

GEOCHEMISTRY OF RWENZORE HOT SPRENGS

Vincent Kato Department of Geological Survey and Mines, Entebbe, Uganda

- Length of 115Km
- Width of central dome 48 - 64 km
- Highest peak
 >5105m

LOKE

Snowy Mountain

 Crystalline basement rocks (Precambrian)

(amphibolite schist, amphibolites, diorite, diabase)

- Gneiss
- Schist,
- Quartzite,
- Granites

- BGR-DGSM
- DETAILED SURFACE ANALYSIS OF BURANGA

SCOPE OF WORK

- © Geoimage Stebler (2004)
 - Ground geophysics (gravity, geo-electric, TEM, Micro
 - seismic)
 - Geochemistry
 - Geology (Remote sensity)

Contents

· Noble gas General Geology geochemistry of Rwenzori Stable isotope · Sampling sites geochemistry Chemical Area selection composition Chemical Condusion geothermoment Acknowledgments Salinity analysis

- Basement rocks
- Tertiary sediments
- faults
- Seismically active

Surface Temperatures

- Buranga (95°C)
- Rwimi (25°C)
- Rwagimba (65°C)
- Bugoye (25°C)
- Kibege (45°C)
- Muhokya (41°C)
- Mubuku (41°C)

Surface manifestations

- Hot springs > 50°C
- Warm springs 26-50°C
- Hydrothermal deposits

Seepages

Gaseous emissions bubbling pools Geothermal grass Hot pools

Chemical Composition

Peripheral / shallow water (bicarbonate waters)

BINDING I

- Steam heated waters
- Intermediate / hybrid waters

&-mixing

- R2=0.9978
- Very high correlation
- Genetic implication

Mg contents

- Influence of meteoric waters / surface derived water
- Immature waters (Rwimi, Kibenge & Muhokya)
 - Genetic relativ
 - Partial equilibration / mixing
 - Boiling -high solute contents (Buranga)

Chemical geothermometry

- Immature waters (Kibenge, Muhokya, Rwimi)
- Deposit travertine
- Not justified (not even partial equilibrium)
- Lower temp (~150oC) typical of environments created by the absorption of CO2-rich vapors into groundwater at the periphery of a system.

Salinity analysis

- The Br/Cl ratios fall in a range 0.00451 to 0.01120.
- Seawater (typically 0.00347) Cl=19000mg/l, Br=65mg/l.
- Silicate rock-water interaction / fluid inclusion leaching

Isotope Geochemistry

Geoimage

C

- No major Oxygenshift
- Isotopically lighter
- Higher altitude

Gas geochemistry

- Greater meteoric ASW recharge (from Mt. Rwenzori, southern end)
- Greater heat conduction resulting low surface temperatures.

Oxygen-18 distribution

- Trend northwards
- More proximal to heat

Noble gas geochemistry

Location	Ne/He	³ He/ ⁴ He x 10 ⁻⁶	⁴ He_Nml	R/ Ra
Mumbuga	0.002	3.80	3.00 x 10 ⁻²	2.7
Mumbuga	0.002	3.75	7.00 x 10 ⁻²	2.7
Kagoro	0.002	3.90	2.00 x 10 ⁻²	2.8
Rwimi	0.002	2.10	5.00 x 10 ⁻⁴	1.5
Kibiro	0.002	3.00	6.00 x 10 ⁻³	2.1

Noble gas geochemistry

- mantle-derived helium (intrusion?)
- crustal contamination
- reduced influence (Rwimi)
- dilution by radiogenic helium (crustal)

$\delta 13C$ in CO2

- -5.3 and -5.9‰, Rwimi
- deep magmatic fluids
- (-8 to -4‰; Allard and others 1977; Allard, 1979, Rollinson 1993
- MORB (-8 to -5‰, Taylor et al, 1967, Deines. 1970
- Buranga δ13C values -6.5
 & -7.3‰,
- Kibenge δ13C values -19.8
 & -20.5‰.

$\delta 13C$ in CO2

- Breakdown of organic materials in sedimentary rocks
- 20‰ (Rollinson, 1993).

$\delta 13C$ in CH4

- Kibenge δ13C (PDB) in CH4 are as low as -22.6‰
- Buranga δ13C values clustering between between -52.7 to -54.2‰.
- Present evidence, primordial, decomposing sediment, or from reduction of magmatic carbon dioxide.

- (CH4-CO2) tend to get higher as you move northwards
- High meteoric recharge from the south
- greater flushing of S springs over time by meteoric water, possibly resulted in most gases having been swept from the south (Kibenge, CO2 vol% 1.17, Methane vol%, 0.25).
- Rwimi & Buranga huge quantities.
- Less flushing by meteoric fluids in the north

HYDROGEN

- H2 must have undergone partial conversion to CH4 and NH3
- Not detectable (Kibenge, Rwimi, Mumbuga & Kagoro)
- Absorbed in O2-rich meteoric waters

- No detectable tritium (Kibenge & Buranga)
- Large scale atmospheric testing of thermonuclear bombs (1952)
- Pre-bomb tritium values
- Isolated from direct contact with atmosphere

87Sr/86Sr

- Buranga (0.7195-0.7287).
- Granitic gneiss (crystalline basement rocks)

- Meteoric recharge from Mt Rwenzori
- Cold water (high density)
- Hot water (low density)
- Crystalline rocks (fractures, faults)
- Convecting magma (heat)
- +Driving force (difference in altitude)
- Difference in density
- Gravitational recharge

- Muhokya, Kibenge, Rwimi, Bugoye and Nyakalenjijo - very low temperatures and correspondingly very low discharge rates
- Marginal springs, lost much of their heat by conduction
- Temp of the rocks at the sweep base are not high, buoyancy forces are small which explains low surface discharge rates.
- Northwards, an in discharge rate and surface discharge temperatures are noticed reaching maximum at Buranga (950C, and discharge rate greater than 17 l/sec).

AREA SELECTION

- Buranga hot-springs migratory channels are presumably surrounded by hot rocks (high heat flow zone, with little heat being lost by conduction, except very close to the surface).
- Buranga springs qualify to be more proximal to the up-flow zone

- Low SiO2 Levels reflect low temps
- Hybrid / intermediate waters
- Recharged from Mt. Renoirs
- Pre-bomb waters
- Hydrological connection / Genetically related (single hot water reservoir?)
- Marginal / periphery waters
- Magmatic heat source / crustal contamination

Conclusion

- Chloride salinity = Largely derived Silicate rock water interaction / fluid inclusion leaching
- Slightly to moderately saline (TDS)
- Recharge from south to the north (ASW)
- Buranga is more proximal to up-flow zone
- Fracture controlled reservoir
- Partial equilibration & mixing

Acknowledgment

- Federal Republic of Germany (BGR)
- Uganda Government (DGSM)

